[1] Dellinger RP, Rhodes A, Evans L, et al. Surviving Sepsis Campaign[J]. Crit Care Med, 2023, 51(4):431-444.
[2] Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021[J]. Crit Care Med, 2021, 49(11):e1063-e1143.
[3] Marshall JC. Sepsis-3: What is the Meaning of a Definition?[J]. Crit Care Med, 2016, 44(8):1459-1460.
[4] Drewry AM, Hotchkiss RS. Sepsis: Revising definitions of sepsis[J]. Nat Rev Nephrol, 2015, 11(6):326-328.
[5] Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315(8):801-810.
[6] Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev, 2016, 274(1):330-353.
[7] Wang C, Xu R, Zeng Y, et al. A comparison of qSOFA, SIRS and NEWS in predicting the accuracy of mortality in patients with suspected sepsis: A meta-analysis[J]. PLoS One, 2022, 17(4):e0266755.
[8] De Backer D, Deutschman CS, Hellman J, et al. Surviving Sepsis Campaign Research Priorities 2023[J]. Crit Care Med, 2024, 52(2):268-296.
[9] 徐逸天, 曹彬. 病毒性感染中毒症—一个亟待重视的概念[J]. 中华结核和呼吸杂志, 2021, 44(7):674-679.
[10] Gu X, Zhou F, Wang Y, et al. Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment[J]. Eur Respir Rev, 2020, 29(157):200038.
[11] Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock[J]. Intensive Care Med, 2004, 30(4):536-555.
[12] Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012[J]. Intensive Care Med, 2013, 39(2):165-228.
[13] Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016[J]. Intensive Care Med, 2017, 43(3):304-377.
[14] Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update[J]. Intensive Care Med, 2018, 44(6):925-928.
[15] Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11):1181-1247.
[16] Zampieri FG, Bagshaw SM, Semler MW. Fluid Therapy for Critically Ill Adults With Sepsis: A Review[J]. JAMA, 2023, 329(22):1967-1980.
[17] Spiegel R. Stressed vs. unstressed volume and its relevance to critical care practitioners[J]. Clin Exp Emerg Med, 2016, 3(1):52-54.
[18] Hernandez G, Carmona P, Ait-Oufella H. Monitoring capillary refill time in septic shock[J]. Intensive Care Med, 2024, 50(4):580-582.
[19] Hernández G, Ospina-Tascón GA, Damiani LP, et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients With Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial[J]. JAMA. 2019 Feb 19;321(7):654-664.
[20] Zampieri FG, Damiani LP, Bakker J, et al. Effects of a Resuscitation Strategy Targeting Peripheral Perfusion Status versus Serum Lactate Levels among Patients with Septic Shock. A Bayesian Reanalysis of the ANDROMEDA-SHOCK Trial[J]. Am J Respir Crit Care Med, 2020, 201(4):423-429.
[21] Kattan E, Hernández G, Ospina-Tascón G, et al. A lactate-targeted resuscitation strategy may be associated with higher mortality in patients with septic shock and normal capillary refill time: a post hoc analysis of the ANDROMEDA-SHOCK study[J]. Ann Intensive Care, 2020, 10(1):114.
[22] Duranteau J, De Backer D, Donadello K, et al. The future of intensive care: the study of the microcirculation will help to guide our therapies[J]. Crit Care, 2023, 27(1):190.
[23] Russell JA, Lee T, Singer J, et al. Days alive and free as an alternative to a mortality outcome in pivotal vasopressor and septic shock trials[J]. J Crit Care, 2018, 47:333-337.
[24] Ospina-Tascón GA, Hernandez G, Alvarez I, et al. Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis[J]. Crit Care, 2020, 24(1):52.
[25] Roberts RJ, Miano TA, Hammond DA, et al. Evaluation of Vasopressor Exposure and Mortality in Patients With Septic Shock[J]. Crit Care Med, 2020, 48(10):1445-1453.
[26] Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients[J]. Crit Care, 2011, 15(1):R15.
[27] García MI, Romero MG, Cano AG, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study[J]. Crit Care, 2014, 18(6):626.
[28] Peltan ID, Brown SM, Bledsoe JR, et al. ED Door-to-Antibiotic Time and Long-term Mortality in Sepsis[J]. Chest, 2019, 155(5):938-946.
[29] Seymour CW, Gesten F, Prescott HC, et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis[J]. N Engl J Med, 2017, 376(23):2235-2244.
[30] Bhavani SV, Semler M, Qian ET, et al. Development and validation of novel sepsis subphenotypes using trajectories of vital signs[J]. Intensive Care Med, 2022, 48(11):1582-1592.
[31] Balch JA, Chen UI, Liesenfeld O, et al. Defining critical illness using immunological endotypes in patients with and without sepsis: a cohort study[J]. Crit Care, 2023, 27(1):292.
[32] van Amstel RBE, Kennedy JN, Scicluna BP, et al. Uncovering heterogeneity in sepsis: a comparative analysis of subphenotypes[J]. Intensive Care Med, 2023, 49(11):1360-1369.
[33] Yan P, Huang S, Li Y, et al. A New Risk Model based on the Machine Learning Approach for Prediction of Mortality in the Respiratory Intensive Care Unit[J]. Curr Pharm Biotechnol, 2023, 24(13):1673-1681.
[34] Pan P, Liu Y, Xie F, et al. Significance of platelets in the early warning of new-onset AKI in the ICU by using supervise learning: a retrospective analysis[J]. Ren Fail, 2023, 45(1):2194433.
[35] Wang Z, Fan H, Wu J. Early prediction of moderate-to-severe condition of inhalation-induced acute respiratory distress syndrome via interpretable machine learning[J]. BMC Pulm Med, 2022, 22(1):193.
[36] Liu C, Yao Z, Liu P, et al. Early prediction of MODS interventions in the intensive care unit using machine learning[J]. J Big Data, 2023, 10(1):55.
[37] Li X, Xu X, Xie F, et al. A Time-Phased Machine Learning Model for Real-Time Prediction of Sepsis in Critical Care[J]. Crit Care Med, 2020, 48(10):e884-e888.
[38] Pan P, Li Y, Xiao Y, et al. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation[J]. J Med Internet Res, 2020, 22(11):e23128.